skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hashmi, Hassaan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electronically tunable metasurfaces, or Intelligent Reflecting Surfaces (IRSs), are a popular technology for achieving high spectral efficiency in modern wireless systems by shaping channels using a multitude of tunable passive reflecting elements. Capitalizing on key practical limitations of IRS-aided beamforming pertaining to system modeling and channel sensing/ estimation, we propose a novel, fully data-driven Zerothorder Stochastic Gradient Ascent (ZoSGA) algorithm for general two-stage (i.e., short/long-term), fully-passive IRS-aided stochastic utility maximization. ZoSGA learns long-term optimal IRS beamformers jointly with short-term optimal precoders (e.g., WMMSE-based) via minimal zeroth-order reinforcement and in a strictly model-free fashion, relying solely on the effective compound channels observed at the terminals, while being independent of channel models or network/IRS configurations. Another remarkable feature of ZoSGA is being amenable to analysis, enabling us to establish a state-of-the-art (SOTA) convergence rate of the order of O( Sā€€āˆ’4) under minimal assumptions, where S is the total number of IRS elements, and   is a desired suboptimality target. Our numerical results on a standard MISO downlink IRS-aided sumrate maximization setting establish SOTA empirical behavior of ZoSGA as well, consistently and substantially outperforming standard fully model-based baselines. Lastly, we demonstrate that ZoSGA can in fact operate in the field, by directly optimizing the capacitances of a varactor-based electromagnetic IRS model (unknown to ZoSGA) on a multiple user/IRS, link-dense network setting, with essentially no computational overheads or performance degradation. 
    more » « less